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Universidad Nacional Autónoma de México, México, and
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Abstract

Purpose – To provide a suitable linkage of a computational fluid dynamics code and a shape
optimization code for the augmentation of local heat transfer coefficients in forced convection channels
normally used in the cooling of electronic equipment.

Design/methodology/approach – A parallel-plate channel with a discrete array of heat sources
embedded in one wall, while the other wall is insulated, constitutes the starting model. Using water as
coolant, the objective is to optimize the shape of the channel employing a computerized design loop.
The two-part optimization problem is constrained to allow only the unheated wall to deform, while
keeping the same inlet shape and observing a maximum pressure drop constraint.

Findings – First, the results for the linearly deformed unheated wall show significant decrease
compared with the wall temperatures of the heated wall, with the maximum wall temperature
occurring slightly upstream of the outlet. Second, when the unheated wall is allowed to deform
nonlinearly, a parabolic-like shaped wall is achieved where the maximum wall temperature is further
reduced, with a corresponding intensification in the local heat transfer coefficient. The effectiveness of
the computerized design loop is demonstrated in complete detail.

Originality/value – This paper offers a simple technique for optimizing the shapes of forced
convection channels subjected to pre-set design constraints.
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Nomenclature
cp ¼ specific heat at constant pressure
D ¼ tube diameter
f ¼ friction factor
h ¼ local convection coefficient
k ¼ thermal conductivity
l þ ¼ dimensionless mixing length

(equation (3b))

_m ¼ mass flow rate
Nu ¼ local Nusselt number, hD/k
Pr ¼ Prandtl number, n/a
Prt ¼ turbulent Prandtl number, 1M/1H

Qt ¼ total heat transfer rate (equation (13))
r ¼ radial coordinate
R ¼ tube radius
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R þ ¼ dimensionless value of r (equation (2))
Re ¼ Reynolds number, umD/n
T ¼ time-average temperature
u ¼ time-average velocity
um ¼ mean velocity
ut ¼ shear velocity, (tw/r)1/2

u þ ¼ dimensionless value of u (equation (2))
x ¼ axial coordinate
y ¼ radial distance measured from the

tube wall
y þ ¼ dimensionless value of y (equation (2))
z ¼ dimensionless value of z (equation (8c))

Greek letters
a ¼ thermal diffusivity
1H ¼ eddy diffusivity of heat
1M ¼ eddy diffusivity of momentum

h ¼ dimensionless value of r
(equations (8a)-(8e))

�h ¼ transformed h (equations (17a) and
(17b))

u ¼ dimensionless value of T
(equations (7a)-(7c))

m ¼ dynamic viscosity
n ¼ kinematic viscosity
r ¼ density
t ¼ shear stress

Subscripts
b ¼ mean bulk
e ¼ entrance
i ¼ line
w ¼ tube wall
1 ¼ fully developed

Introduction
The transport of high temperature metallic liquids inside tubes and channels is of
paramount interest in metallurgical and manufacturing engineering. In particular,
metal liquid transport is a key component of the modern foundry industry and has
been used for a number of years in the nuclear industry ( Jones, 1986). Most of the
applications in the non-ferrous industry are related to the transport of liquid alloys
through refractory lined steel pipes from furnace to furnace or to feed intermediate
vessels or casting stations (Neff and Cooper, 1990). Both, low pressure die-casting and
permanent mould casting machines are fed in this manner (Sajdak et al., 1985). While
rectangular-shaped channels are common for transporting non-ferrous metals and
their alloys, annular ducts are normally used for liquid sodium and lithium ( Jones,
1986). Small amounts, in the order of 1,000 lbs, of aluminum may be transferred
through refractory lined steel pipes with a loss of 18C/m (Neff, 1986). This low level of
heat loss impacts directly on productivity and quality, since less superheat is required
in the furnace which results into shorter processing times and less oxidation and dross
formation (due to the lower casting temperature associated with less superheat).

To determine dependable heat transfer rates for this important class of internal
convective flow, a number of studies have been conducted based on numerical
simulations and experimental observations in the laboratory. A brief account of the
relevant investigations on this topic, considering fully developed velocity profiles and
constant properties, will be given here. Notter and Sleicher (1972) presented an
analytical solution for the turbulent Graetz problem following the ideas of the
counterpart solution performed in the pioneering works by Graetz for laminar flows.
These authors solved the Sturm-Liouville problem numerically for the range
104 , Re , 106 and 0 , Pr , 104. Chen and Chiou (1981) examined the behavior of
turbulent heat transfer to metallic liquids for various combinations of Re and Pr in a
tube using finite-difference techniques. The governing equations were solved by
Patankar’s methodology using a forward marching procedure with 20 and 30 nodes
deployed in the cross-stream direction. Results were reported for Re up to 5 £ 105 and
Pr p 0.1. Lee (1982) investigated the important effect of axial fluid conduction for
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a situation of a metallic liquid flowing turbulently in a tube with uniform wall
temperature. The calculations led to the conclusion that this effect is significant in the
thermal entry region only for values of the Peclet number lower than 100, but it is
negligible in the thermally developed region.

The main focus of the present investigation is to analyze numerically the turbulent
forced convection of fluids covering the low spectrum of the Prandtl number (Pr p 0.1)
in the thermal entry region of a circular tube considering constant properties.
Particular attention will be given to the case of uniform wall temperature and fully
developed, turbulent velocity profile.

An appraisal of the conservation equations reveals that the choice of the models for
turbulent momentum and energy transfer is of considerable importance and perhaps is
the crucial aspect of the analysis in order to match quantitatively the numerical
predictions with the experimental data. In view of this, Cebecci’s (1973) version of von
Karman’s mixing length turbulence model has been adopted in this study.
Furthermore, in discussing the form of the turbulent Prandtl number for low
Prandtl number fluids (Pr p 0.1), the models recommended by Azer and Chao (1960)
and Dwyer and Tu (1969) are employed.

The present study seeks to adapt the finite volume method of lines (FVMOL) to the
problem of turbulent forced convection of metallic fluids flowing inside a circular tube.
This particular problem is characterized by a one-dimensional ordinary differential
momentum equation and a two-dimensional partial differential energy equation.
Accordingly, using the Runge-Kutta integration algorithm for the momentum equation
and the associated system of energy equations of first order gives directly the velocity
profile and the mean bulk temperature distribution in the metallic liquid. Comparison
of the theoretical distributions of mean bulk temperatures and local Nusselt numbers
with existing numerical and experimental data are made in both the entrance and the
fully developed thermal regions of the tube. In general, concordance is quite
satisfactory bearing in mind that in this investigation coarse grids with only ten
unequal intervals in the cross-stream direction were used.

Problem statement
Consider a metallic liquid (Pr p 0.1), at an elevated uniform temperature, entering the
heat exchange region of a thin-walled tube. The flow will be assumed to be turbulent
and fully developed and the internal surface of the tube is considered to be isothermal.

Integration of the dimensionless equation for conservation of momentum:

1 þ
1M

n

� � duþ

dyþ
¼ 1 2

yþ

Rþ
ð1Þ

subjected to the boundary condition uþ (0) ¼ 0, yields the turbulent velocity profile in
the metallic liquid. The participating dimensionless variables are defined as:

uþ ¼
u

ut
; yþ ¼

yut

n
; Rþ ¼

Rut

n
ð2Þ

The eddy diffusivity of momentum, 1M, is given by Von Karman’s mixing length
theory incorporating Cebecci’s (1973) modification:
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1M

n
¼ ðlþÞ2 duþ

dyþ

����
���� ð3aÞ

where l þ defines the mixing length and is given by:

lþ ¼ Rþ½0:14 2 0:08h 2 2 0:06h 4� 1 2 exp 2
yþ

26

� �� �
ð3bÞ

Once the turbulent velocity profile has been computed, the pressure drop Dp over a
fixed tube length, L, may be determined from the friction factor:

f ¼
8

ðuþmÞ
2

ð4Þ

where uþm; the dimensionless mean velocity, is computed from:

uþm ¼ 2

Z 1

0

uþh dh ð5Þ

The dimensionless energy conservation equation assuming fully developed turbulent
hydrodynamics inside a smooth circular tube is given, in dimensionless form, by:

Re
uþ

uþm

›u

›z
¼

4

h

›

›h
h

1

Pr
þ

1M=n

Prt

� �
›u

›h

� �
ð6Þ

The main assumptions considered to write equation (6) are:
. the thermophysical properties of the metallic liquid are constant; and
. axial fluid conduction is negligible.

The boundary conditions are given by:

uð0;hÞ ¼ 1 ð7aÞ

›u

›h
ðz; 0Þ ¼ 0 ð7bÞ

uðz; 1Þ ¼ 0 ð7cÞ

The dimensionless variables and parameters in equations (6)-(7c) are expressed by:

u ¼
T 2 Tw

Te 2 Tw
ð8aÞ

h ¼
r

R
ð8bÞ

z ¼
x

D
ð8cÞ
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Re ¼
umD

n
ð8dÞ

Pr ¼
n

a
ð8eÞ

As far as the eddy diffusivity of momentum is concerned, the expression for the 1M

distribution is given in equations (3a) and (3b).
According to Reynolds (1975), the existing models for the turbulent Prandtl number,

Prt ¼ 1M=1H; range from purely empirical considerations to formal mathematical
analysis based on the Reynolds stress equation. Among the candidate models
available, the present calculations will rely on the popular models proposed by:

. Azer and Chao (1960):

Prt ¼

1 þ
380f ð y=RÞ

ðRe PrÞ0:58

1 þ
135f ð y=RÞ

ðReÞ0:45

ð9aÞ

where:

f ð y=RÞ ¼ exp 2
y

R

� �0:25
� �

ð9bÞ

and
. Dwyer and Tu (1969):

1

Prt
¼ 1 2

1:82

Prð1M=nÞ
1:4
max

ð10aÞ

where:

ð1M=nÞmax ¼ 4 þ 0:002897Re 0:919 ð10bÞ

respectively.

Once the dimensionless mean bulk temperature:

ubðzÞ ¼

R 1

0u
þuhdhR 1

0u
þhdh

ð11Þ

has been accurately computed, the total heat flow, Qt, transferred in a certain length of
the heat exchange region, L, may be calculated in two different ways:

(1) Indirectly by means of the local convection coefficient h, usually expressed in
dimensionless form by the local Nusselt number. The latter may be computed
using:

NuðzÞ ¼

22
›u

›h
ðz; 1Þ

ubðzÞ
ð12Þ

Or
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(2) Directly, by simply computing the change in enthalpy applying a global energy
balance:

Qt ¼ _mCp½Te 2 TbðLÞ� ð13Þ

where the magnitude of Tb is obtained from equation (11).

In light of the foregoing, the advantage offered by the second procedure is
self-explanatory, because knowledge of the mean bulk temperature Tb at a certain
axial position z ¼ L/D leads to the total heat transferred in that specific region
0 , z , L/D.

Hybrid method of solution
The computation of the turbulent velocity profile in equation (1) is rather
straight-forward and it may be accomplished utilizing a standard fourth-order
Runge-Kutta algorithm.

Next, the numerically determined velocity is introduced in equation (6) in order to
calculate the axial development of the temperature field, T(x, r), in the tube. In general,
a partial differential equation of parabollic type, like equation (4), has to be solved
numerically. Using any discrete solution method (Morton and Mayers, 1994), this
equation can be approximated at the point i, j in the computational domain by an
algebraic equation accounting for a five-point molecule. Thus, having such an
algebraic equation for each interior discrete point within the fluid domain, the main
task is to solve a system of algebraic equations for the unknown quantities uij by direct
solution methods having explicit or implicit characteristics.

Alternatively, we propose a hybrid procedure based on the combination of the
method of lines (MOL) and the finite volume method (FVM) which, eventually, yields a
numerical solution. The former is an old method which was discovered by Russian
mathematicians many years ago and has been expertly reviewed by Liskovets (1965),
while the latter was devised by Patankar (1980). Briefly, the original MOL seeks to
replace a parabolic partial differential equation in two equations of first order.
Although, the discretization procedure of the second-order derivative may be achieved
by standard finite-difference analogs, it is preferred to adopt the FVM developed by
Patankar (1980). The implementation of the hybrid methodology requires finite
volumes of finite height and infinite width (Figure 1). As a result of this combination,
each equation participating in the system of first order, ordinary differential equations
governs the behavior of the dependent variable uP representing a finite volume.
Consequently, omitting the peripheral details, equation (6) may be easily converted into

Figure 1.
Finite volume adopted for
implementing the MOL
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a system of first order, ordinary differential equations. An equation for a typical line P
has the form:

dup

dz
¼ aNuN þ aPuP þ aSuS ð14Þ

where the coefficients are expressed by the relations:

aN ¼
8uþm

1
Pr
þ 1M

n
Prt

� 	
N
hN

ReuþPDh
2ðh2

N 2 h2
SÞ

ð15aÞ

aS ¼
8uþm

1
Pr þ

1M

n
Prt

� 	
S
hS

ReuþP Dh
2ðh2

N 2 h2
SÞ

ð15bÞ

aP ¼ 2ðaN þ aSÞ ð15cÞ

Furthermore, the prevailing initial conditions are:

u ¼ 1; at all lines P ð16Þ

The system of equations (14)-(16) is solved by the Runge-Kutta integration scheme.
With the objective of reducing lengthy numerical computations for a turbulently
moving fluid of this nature, the grid points are positioned nonuniformly in the radial
direction, compressing the grid points near the tube wall. The choice of nonuniform
intervals in the radial direction permits the reduction of the number of ODE’s saving
some time in the numerical calculations. This approach could be accomplished by
implementing the radial coordinate transformation suggested by Roberts (1971):

h ¼
ðbþ 2aÞ

Qð �h2aÞ=ð12aÞ
2 bþ 2a

ð2aþ 1Þ½1 þ
Qð �h2aÞ=ð12aÞ

�
ð17aÞ

where:

Y
¼

bþ 1

b2 1
ð17bÞ

This transformation depends on two parameters: a refinement parameter, a and a
streching parameter, b. By assigning a value of a ¼ 0, the mesh will be refined near
the wall only. In fact, h and �h are the dimensionless radial coordinates in the
computational and physical plane, respectively, as shown in Figure 2. For turbulent
flows, the numerical value of the parameter b is chosen such that at least one line lies
inside the viscous sublayer in the thermal entry region.

Discussion of the numerical results
For the hydrodynamic part, the numerically determined friction factors compared
satisfactorily with those obtained from Petukov’s formula (White, 1991) applied to a
circular tube with an smooth surface:

f ¼ ð0:79 lnRe2 1:64Þ22; 104 , Re , 5 £ 106 ð18Þ
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Because of the friction factor is a global quantity, this comparison provides ample
confidence to the computed turbulent velocity profiles.

The computed asymptotic Nusselt number, Nu1, furnishes the data for the
Nu1-surface in Figure 3 which serves to illustrate the influence of Re and Pr
separately.

Also, the Nu1 values showed good agreement with the predictions using the Notter
and Sleicher (1972) correlation equation:

Nu1 ¼ 4:8 þ 0:016Re 0:85Pr 0:93 ð19Þ

which has a range of validity: 0.004 , Pr , 0.1 and Re , 5 £ 105.
For the remaining part of the discussion of results, thermal quantities will be

presented for a metallic liquid with a Pr ¼ 0.03 (mercury). Plots of the asymptotic
Nusselt number in terms of Re are shown in Figure 4. Here, the characteristic
straight-line behavior in log-log coordinates is manifested. The variations of Nu1 vs Re
using the models of Azer and Chao (1960) and Dwyer and Tu (1969) for the turbulent
Prandtl number are plotted using a solid and a dashed line, respectively. An envelope
pattern is observed surrounding the experimental data of Sleicher and Rouse (1975),
which is shown for comparison purposes.

Unquestionably, the quantity of most practical interest in thermally developing
metallic flows through isothermal tubes is the mean bulk temperature and its
relationship to the heat transferred between the bulk of the flow and the tube walls.

Figure 2.
Radial coordinate
transformation
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In this regard, results for the distributions of mean bulk temperature and local Nusselt
number for a metallic liquid are shown in Figures 5 and 6. In these figures, there are
two sets of curves: one gradually sloping downward which corresponds to ub and is
referred to the right ordinate. The other, sharply sloping downward, corresponds to the
ratio Nu/Nu1 and is referred to the left ordinate. Both curves share the same abcissa.
Figure 5 shows the variation of the mean bulk temperature and Nusselt number ratio
for Re ¼ 105 using the models of Azer and Chao (1960) and Dwyer and Tu (1969) for
the turbulent Prandtl number. For purposes of validation, these predictions are

Figure 3.
Surface for the asymptotic

Nusselt number varying
with the Reynolds and the

Prandtl numbers

Figure 4.
Asymptotic Nusselt

numbers: comparison
between predictions (lines)

and experiments
(symbols) for Pr ¼ 0.03
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compared with the experimental data obtained by Awad (1965) also. The mean bulk
temperature shows its characteristic monotonic decreasing behavior and is insensitive
to the model adopted. In contrast, the trend observed for Nu/Nu1 is quite interesting:
the dashed curve, based on the model of Dwyer and Tu (1969) establishes an upper
bound whereas the solid curve, based on the model of Azer and Chao (1960) specifies a
lower bound. In general, both sets of curves show a good quantitative behavior. The
Nusselt number, Nu, being a local thermal quantity is dependent on the model adopted.

Figure 5.
Nusselt number
distributions: comparison
between predictions (lines)
and experiments
(symbols) for Pr ¼ 0.03,
Re ¼ 105. Also shown is
the mean bulk
temperature (use right
y-axis)

Figure 6.
Nussel number
distributions: comparison
between predictions (lines)
and experiments
(symbols) for Pr ¼ 0.03,
Re ¼ 3 £ 105. Also shown
is the mean bulk
temperature (use right
y-axis)
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Numerically determined results and experimental data for a higher Reynolds
number, Re ¼ 3 £ 105, are shown in Figure 6. The curves exhibit the same basic
features as those of Figure 5 which were discussed before. Again, both curves provide
an envelope for the experimental data points.

On the whole, the foregoing comparisons indicate a remarkable level of agreement
using a rather coarse grid consisting of ten unequally spaced lines for calculations of
turbulent convective flows. No appreciable differences in the global quantities were
detected when the number of lines was increased to 20. For the same combination of Re
and Pr, the average CPU time is approximately doubled for this latter run.

Concluding remarks
An extremely simple computational procedure has been developed for analyzing entry
region heat transfer to turbulent metallic liquids flowing inside tubes. The
computational procedure employed the FVMOL which reformulates the partial
differential energy equation with variable coefficients into a system of first order
energy equations with constant coefficients. Essential quantities such as the turbulent
velocity profile, the mean bulk temperature distribution and the local Nusselt number
distribution are readily obtained with a Runge-Kutta integration algorithm. Upon
reviewing the various comparisons with the experimental measurements and with
highly accurate finite-difference solutions, there appears to be ample evidence that the
Runge-Kutta based numerical results provided by the present hybrid procedure are
themselves of high accuracy with a minimum computational effort.
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